Design of Composite Control Surfaces for Tailored Deformation Using Fluid Structure Interactions

نویسندگان

  • S. W. Boyd
  • D. Flannigan
  • J. Banks
  • S. R. Turnock
چکیده

In order to take full advantage of the lightweight characteristics of composite materials, design often needs to sacrifice stiffness and exploit the more favourable strength. However, this approach leads to structures that deform significantly under load. This paper outlines a numerical methodology which demonstrates control of the inherent flexible characteristics of composite structures to achieve a desired deformation response. An examination of the sensitivity of the structural response was conducted by asymmetrically varying the ply angles in a number of composite layers within the model. The results indicate that the layers in the skin have a large influence on the development of bend-twist coupling in the control surface. The research culminates in an examination of composite architecture options which result in specific levels of bend and induced twist deformation. This approach clearly shows that one can control the coupled deformation response and that this may have beneficial performance implications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fluid-Structure Interaction of Vibrating Composite Piezoelectric Plates Using Exponential Shear Deformation Theory

In this article fluid-structure interaction of vibrating composite piezoelectric plates is investigated. Since the plate is assumed to be moderately thick, rotary inertia effects and transverse shear deformation effects are deliberated by applying exponential shear deformation theory. Fluid velocity potential is acquired using the Laplace equation, and fluid boundary conditions and wet dynamic ...

متن کامل

Fluid-structure interaction studies on marine propeller

Composite propellers offer high damping characteristics and corrosion resistance when compared with metal propellers. But the design of a hybrid composite propeller with the same strength of metal propeller is the critical task. For this purpose, the present paper focusses on fluid-structure interaction analysis of hybrid composite propeller with Carbon/Epoxy, R-Glass/Epoxy and S2-Glass/Epoxy t...

متن کامل

Design and Modeling of a New Type of Tactile Sensor Based on the Deformation of an Elastic Membrane

This paper presents the design and modeling of a flexible tactile sensor, capable of detecting the 2D surface texture image, contact-force estimation and stiffness of the sensed object. The sensor is made of polymer materials. It consists of a cylindrical chamber for pneumatic actuation and a membrane with a mesa structure. The inner radius of the cylindrical chamber is 2cm and its outer radius...

متن کامل

Vibration analysis of a rectangular composite plate in contact with fluid

In this paper, modal analysis of the fluid-structure interaction has been investigated. Using classical laminated plate theory, a closed form solution for natural frequencies of FSI is extracted. For fluid, homogenous, inviscid and irrotational fluid flow is assumed. Then, a combined governing equation for the plate-fluid system is derived. In order to validate the equations and results, they a...

متن کامل

Failure Pressure Prediction of Semi Spherical GFRP Shells in Thermal Environment

In this article fluid-structure interaction of vibrating composite piezoelectric plates is investigated. Since the plate is assumed to be moderately thick, rotary inertia effects and transverse shear deformation effects are deliberated by applying exponential shear deformation theory. Fluid velocity potential is acquired using the Laplace equation, and fluid boundary conditions and wet dynamic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016